

Greensmith Energy Management Systems

July 27, 2011

IEEE Supersession on Energy Storage

Draft – Confidential

GS has steadily penetrated a significant number of utility and non-utility customers

>	Market
	Progress

Greensmith Approach

Greensmith Technology

Trends & Implications

UTILITIES (8)

- Utility (2 CES systems)
- Utility 2 (10 CES systems including freq reg)
- Utility 3(1 CES system for solar and EV charging)
- Utility 4 (1 PowerVault system for solar +)
- Utility 5 (1 CES system for solar +)
- Utility 6 (1 CES system for residential demonstration via BP)
- Utility 7 (1 CES system for solar +)
- Utility 8 (1 PowerVault system for microgrid – Q1-12)

Non-Utilities

- Amonix (PV OEM 1 PowerVault system for Solar)
- The Prosser Group
 (Intermediary for Project/Fin'g for ConEd 1 PowerVault system for EV charging+)
- NCSU (University microgrid 1 CES system)
- USF (University microgrid 1 CES system)
- EPRI (Analyst/major lead source – CES and PowerVault systems)
- Boston Power (Battery OEM for Duke Energy)

Greensmith is in the process of expanding across multiple vectors

77.		ш
energy	management sys	tems
	Today	
	Today	

Market Progress

Greensmith Approach

Greensmith Technology

Trends & **Implications**

PRODUCT/SERVICE

- Turn-Key Systems (Sm-Med)
- Renewables-Focused
- MW-Level Systems
- Frequency Regulation-Focused
- Residential/Commercial-Focused
- Integration Services/Contractor
- SW Licensor/Developer
- Data Monitoring/Management

GEOGRAPHY

- US
- Canada
- Australia
- Israel
- Western Europe
- Northern Europe
- SE Asia
- India

INDUSTRY

- Utility
- Renewable Generation
- Military
- Metals/Mining
- Home Construction
- **Commercial Construction**

CHANNELS

- Direct
- Analysts
 - Battery or PCS OEM
- EPC or IPP
- Utility
- SW OEM or Data Management

Mass aggregation of DESS means centralized control strategy/architecture

Market Progress

Greensmith Approach

Greensmith Technology

Trends & Implications

Deployment versatility allows utilities to gain significant flexibility as they build out the smart grid over time and wish to capture multiple value streams

Greensmith started small, which required a distributed computing approach

Market Progress

Greensmith Approach

Greensmith Technology

Trends & Implications

Greensmith Intellectual Property Features:

GS' Architecture is Capable of Multiple Applications

- Load shifting/leveling
- Peak shaving/capacity
- Ancillary services
- Power quality
- Solar/wind smoothing
- Portable power placement

Scalable, serviceable tray design that's battery agnostic is a key strategy

Market Progress

Greensmith Approach

Greensmith Technology

Trends & Implications

• 30-100 KW/25-300 KWh

 Support multiple battery types from multiple batter

- Highly modularized
- Pluggable battery trays for both production and off-line maintenance
- Stackable racks
- Standard Greensmith Battery OS III (BOSIII)

Key Features & Functions – Comprehensive

Greensmith developed a system that embraces a changing utility grid environment

Renewable generation investment is not only a trend but a mandate

Energy storage and cloud computing TREENSMITH TO THE PROPERTY TO THE PROPERTY OF THE PROPERTY

- Multiple DESS units form virtual mega-watt storages at a various location
- When used as one virtual unit, physical units form a peer-to-peer network in a LAN
- At any LAN, a single Super Node unit take commands from Portal / Control System and operate peer units and itself in unison.
- Multiple LANs can form a even larger virtual storage units over the WAN/Internet
- Advantages:
 - High reliability Redundancy and backups among peers in communication and control.
 No single point of failure
 - Energy storage on demand physical units can be added or removed from virtual storage in response to energy or power demands
 - Versatility At any time, multiple virtual units can be formed to perform multiple tasks (peek shaving, VAR support, frequency regulation, etc.)
 - Physical units can be distributed close to the problems

